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Abstract

From a‘system of Boltzmannkinetic equations for a gas mixture sub-
jected to photon radiation,'we formulate generalized hydrodynamics equations
which include diffﬁgi&ﬁian@*thermodiffusion phenomena, chemical reactiogﬂkand
magnetohydrodynamic preeééses. The generalized hydrodynamic system is used
in the analysis of upper atmospheric properties.

The book is offered for use by.reéearch specialists working in the
field of atmosphere physics and cosmos; by graduate and under-graduate ‘stud-

ents specializing in physics and meteorologye.

Foreword

The term "upper 1ayers of the atmosphere' is not é very definite
concept. The lower border Qf the region:isqdetermined for all practical
purposes by the characﬁer of tﬁe process analyzéd. Whén the sun radiation
has a direct, immediate effect upon the atmosphere‘in a giyen region, in
terms of the processes induced, becomes an upper atmosphere. The readers
are referred to the introduction for thé expianation of the last characteris—
tic.

According to the criterion indicated, this book contains the entire



thermosphere and parts of the mesosphere as compriéing the upper atmosphere.

An extensive factual material has been collected and numerous theo-
retical assumptions have been developed in regards to the properties of the
atmosphere at high altitudes. At that, the hydrodynamic method of describing
macroprocesses in the atmosphere has been already extended to include the
strato- and mesosphere, making possible the formulation of the meteorology
theory for these regions. We make an attempt, in the present book, Eo
expand the hydrodynamic description to include the thermosphere.

The upper atmosphere, from the point of view of physics presents a
multicomponent gas system affécted by thé external radiation flux. The
basic assumption of the theory is the idea that macroscopié properties of
this system are determined by the elementary processes involved, while the
adequate method of investigation is the kinetic equations method; Maxwell
and Boltzman have devised this method in their works. An attempt has been
made in the introduction to demonstrate that the kinetic equations method,
actually, is the most generalized method--if not the unique method--of all
analysis methods accepted at the present for the description of the upper
atmosphere. This>stateﬁent is 1n accordance with the strong belief of the
authors and they try to defend it in their book. There appears the possi-
bility of building hydrodynamic equations by this method for the upper
atmosphere and'thé securing of a series of physical results without solving
kinetié equations. The present monograph is devoted to this problem.

Mathematicai formulae resulting from the theory are unfortunately
too cumbersome and do not possess the desired finesse; this is the conse-
quence of the endeavor to bring the equations to their final results. In

this comnection the authors may be treated as being old fashioned but
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their excuse would be in the fact that their book 1s considered as a work
which pursues primarily practical, not theoretical aims. Yet, it is possible
that a diagram method could have been worked out, analogous to the Feinman
method applied in quantum mechanics.

The book does not exhaust the entire problem, by any means, and is
actually only the first stefp in this new area of physics of the upper
atmosphere. The realization of the planned program will require much time
and efforts and the authors will be happy if their work results in interest
in the probilems described and in the method for their solution as offered
by the authors. Chapters 1 and 4 contain the preliminary material which
should be the base for work in the direction indicated.

Giving a short characteristic of the book content we may state that
chapters 1 and 2 are devoted fofthe%method of kinetic equationsband the
formulation of generalized oquation of hydrodynamics in the upper atmosphere.
Chapter 3 presents the physical effect of the latter. Chapter 4 contains a
summary of data which constitute the experimental basis of the theory.

The authors expressitheir grafitude to the staff members of the
section of physics of the high layers of the atmosphere of the Central
Aerolédgical Observatory; the discussions carried on were extremely useful
in understanding many questions; and also to professor K.S. Shifrin for his
valuable suggestions made at the time the monograph was readled for print.

A. Ivanovskiy
A. Repnev
E. Shvidkovskiy

Central Aerological Observatory

January 1966
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Numbering formula and references

The numbering of formulae is independent for each individual para-
graph (1, 2, 3,:and so on).

The following rule has been accepted for references to formulae:

1) when the formula is contained in a given paragraph, the refer-
ence is limited to the ordinal number of the formula in the given paragraph,
for instance (14);

2) when the formula is contained in a different paragraph of the
same chapter the reference includes two numbers: first the number of the
paragraph of the chapter then the ordinal number of the formula in the para-

graph indicated, as for instance: (3.18);

‘

3) when the formula is,Cbntéineqrinuafdiffegént chaptefgjthem(n,j
‘reference contains three numbers: first the number of the chapter, then
the number of the paragraph and, finally the ordinal number of theiformula

as it appears in the paragraph, for instance: (2.4.8).
INTRODUCTION

First of all, we should probably give an explanation for the title
of the book. The expression 'upper afmosphere" has attained in the last
years in the Russian scientific literature a-well-inderstood context and
means the upper atmosphere layers. In this book the lower border of the
upper atmosphere is taken as being situated at the place where the gravi-
tational-diffusive distribution of gases begins to play an important part.
On the other hand, it ‘has been proven by means of experiments that contrary
to the properties displayed by lower layers, the characteristics of the

upper atmosphere are, basically etermined by the direct effect of the sun.



Therefore, the upper atmosphere should be considered as a medium presenting
a non—-insulated gas system affected by the external photon and corpuscular
radiation and, on the whole, not in a state of thermodynamic equilibrium.

It seems natural to apply the methods of the kinetic theory of gases
on the Boltzman equation to a theoretical analysis of this type of medium.
Tt is well known that the basis of kinetic equations and methods of their
solving contain a serie; of intricate questions, which are not, however,
considered in this book. In other words, this is not a book on the theory
of kinetic equations, but only on the application of this theory to a definite
physical problem. Following this path--we consider the possibility of the
simplest and physically proven method of obtaining certain important con-
clusions on the state of upper atmosphere layers, solving the mechanisms
of elementary processes in reactions taking place in the gas medium as
affected by photon and corpuscular radiation.

The subsequent investigation is therefore based on the Boltzman
equation system for gas mixtures, with collision integrals and reaction
integrals on the right. In order to solve the system the met#od of moments
is used in a form slightly different from the one used by Grade. Boltzman
equations are treated concretely in reactions about which we may assume
that they play~€he:maiﬁipart in the formation of the staté of the atmosphere
at high latidues—-predominantly in the thermosphere and, partially, in the
mesosphere. 4 |

As for Boltzman's equation derivation and the description of its
characteristics thé questions may be studied in the books of A. Sommerfeld
"Thermodynamics and Statistical Physics” (Moscow,-l955), S. Chapman, T.

Cowling "Mathematical Theory of Non-homogeneous Gases" (M. 1960). A



two—-component gas is considered in the latter book. General mention on
chemical reactions may be found in the book by Geo. Hirshfeld, Ch. Curtiss
and P. Byrd "Molecular theory of gases and liquids" (M. 1961).

The equations received in the monograph are not solved extensively,
in other words, the computation of non-equilibrium distribution fuctions
in its explicit aspect is not performed, as the problem is reduced to the
construction of generalized hydrodynamics equations for the upper atmos-
phere in the so-called thirteen-moment approximation.

Maxwell already has..demonstrated the possibility of obtaining a
hydrodynamics system éf equations from the kinetic equations of Boltzman
for the simple gés. Further on, the manner of solving of Boltzman equation
by reducing to hydrodynamics equations has been considered in the works
of Gilbert, Enscog and Chapman, Barnett, Grade. The methods they suggested
have their positive and negative sides. These methods constitute a con-
siderable independent Chapter in the kinetic gas theory. The most efficient
method for our aims of investigating the properties of the upper atmos-
phere appears to be the method suggested by Grade and which is avriant of
the general method of moments. It is shortly described in paragraph 4 -
chapter 1. |

The conventional hydrodynamics are formulated in the approximation
of one gas without considering theceffects of diffusion and thermal diffusion.
It does not account for chemical transformations of the molecules, dissocia-
tion, recombination, excita?ion,_etc. Yet in the upper atmosphere the lat-
ter processes, aé,théy are induced by solar and cosmiq radiation sometimes
‘determine the properties and the behaviour of gases, while the diffusion

phenomena play definitely a very considerable part. Methods used for the
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" analysis of the properties of the upper atmosphere are characterized by a
great variety and dissociation. We seechere photochemistry and hydro-
dynamics the electromagnetic theory, theory of electron and ion collisions,
etc. The absence of one common method resul&s in the fact that even com-
paratively simple processes in the upper atmosphere sometimes can be con-
sidered only qualitatively and separately from other processes. This situ-
ation may easily be proven by using, as an example, the theory on gravita-
tional-diffusive distribution of gases. The theory of this process suggested
by Nicolat is‘based on formulae obtained for the binary mixture of gases.
Yet, even the area of the atmosphere aajoining 100 km should be considered
as a system consisting of three components and over. In addition, charged
components are present in the upper atmosphere; these components are actually
electrons and ions affected by magnetic and electric fields. The electrons
in the Earth ionosphere have a high capacity for moving and, as shown by
recent investigations, have, in some areas of the ionosphere a higher degree
of temperature than the other components in the atmosphere. Therefore, even
at a‘small concentration the electrons play an important part in determining
heat conditions in the upper atmosphere. The part played by electrons is
particularly important in heat conductivity along the lines of force of the
earth magnegic field. Thefefofe, hydrodynamics of the upper atmosphere
must take into account all the above factors listed and should generalize
vin this sense.

It is possible,‘of course, to attempt to formulate the generalized
hydrodynamic equation for the upper étmosphere in a phenomenological manner,
but there is then thevpossibility of overlooking many important processes

and a great many empirical coefficients will then have to be introduced.
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Therefore, the derivation of generalized hydrodynamical equztions from the
Boltzman equation system, which carries the mechanisms of processeé subject
to calculation seems to be the most natural and physically justifiable.

The system of correlated hydrodynamic equdations taking into acdcount
the basic reactions which take place in the upper atmosphere has the fol-
lowing limitations: it is devised only for mechanisms relating to paired
collisions. However, in spite of the rarefication of the gas forming the
upper atmosphere there is a basis for the assumption that triple collisions
may play a part as well.. From the point of view of a developed theory the
formation of the ozone layer cannot be considered, either (for the same
reasons — the impossibility of taking into account the triple collisions).
The question dealing with the extent of the existing limitation and the
nature of the macroscopic.-properties is too complicated and can be fully
clarified only on thé bésis of data obtained by experiments and observations.

In addition to limitations of the theory from below, there also
exists a limitation depending ﬁpoh the altitude above, which are dependent
upon defects inherent to e Grade method. Grade himself gave two.limitations
for the applicability of his method: 1) a change in the flux velocity at
a distance of a median length of a free path should not exceed 20% of the
speed of sound and, 2) the change in absolute temperature of the gas over
this distance should not exceed 20 % of its magnitude. The existing experi-
mental data show that the'first condition is always achieved in the atmos-—

phere. The second condition can be recorded at:

5.107% a7 \
2 T <L0,9.
TP MM PT. CT. 0z ~= \

By substituting the values Tngl\ and p known from the CIRA.
: 2 '
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1965 atmosphere mockup, we see that at a 200 km altitude this éondition is
definitely attained. As the altitude increases the ég; tendg to zero,

as absorbed solar energy, in other words, in proportion to'the decrease in
density. The length of the free path grows in inverse proportion to density.
The left part of the above formula tends to a constant limit, considerably
smaller than 0.2. This would provide a basis for the belief that the second
condition of Grade is achieved in the entire atmosphere. At high altitudes
the atmosphere is subjected to considerable 24 hour fluctuations. At those
altitudes where the time between the particles collision may be commensurable
with a 24 hour period the atmosphere may be in the non-equilibrium state.
However, evaluations indicate that this non-equilibrium may originate only
at altitudes considerably exceeding 800 km. Finally, as.we analyze an

open system, obsorbing radiation, we must admit that one more source of
non-equilibrium exists. Detailed evaluations of this non—equilibrium have
been made in paragraph 4 of chapter 3. We demonstrate that kinetic temper-
ature and temperature defining the distribution according to pressure or
density degree differ by 1% in relation to the last value of non—equilibrium
at altitudes exceeding 400 to 500 km. Thus, the method used by us may be
appliéd, without involving great errors in an altitude range of 100 to 500
km, as a minimum.

Whenbformulating the system of generalized hydrodynamic equations
the authors did not introduce the distribution function along the internal
levels of particle freedom, as thils fact did'not affect the form of the
equations obtained. If one and the same particle may be located at dif-
ferent levels of excitation of the internal levels of freedom this fact

may be considered as a sufficient indication of their being isolated into
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into individual components in the mixture. For all practical purposes,
only two states were distinguished: the basic and the excitation state.
However, this consideration of the component does not agree with the con-
ventional understanding and, in addition, in a subsequent consideration of
all excitation levels the number of components to be analyzed may increase
to infinity. Therefore, a distribution fuction for internal levels of

freedom has been introduced (paragraph 4, chapter 2). At that, we obtain
Cp (l+_2)
i’

where i is the total number of freedom levels instead of
Co .

the 5/3 which Shoﬁld appear from the previous manner of consideration.
Simultaneously, there is a relaxation form in the energy exchange between
the internal and the ﬁrogressive freedom levels.

Many important physical consequences may be obtained when using
hydrodynamic equations even when they are not subsequeﬁtly solved. The
book deals extensively with these consequences and it appears that they
open anentire series of new situations relating to the understanding of
processes taking place in the upper stmosphere and to conditions of formations
of its state depending upon the affect of radiation.

In order to establish fields of thermodynamic parameters and velocities
of macroscopic motions using the solutibnsiof hydrodynamic equations it
is necessary to formulate the border and initial condition; --which is a
question presenting an independent problem in itself, but, in addition we
should also know the cross-section of reactions. In spite of the extensive
material of experimental and theoretical investigations collected on the
last problem, it appears that it is still insufficient for a complete under-
standing of the planned program aﬁd that a considerable amount of work has

to be performed in this direction. At that, it is very important to have
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a very distinct concept of the level and volume of information relating to
the cross-sections of basic reactions. These data which will serve as
basic material for the continued investigationsin the direction planned are
listed in the last chapter.

The schematic method of the theory reported above permits to deter-
mine concrete problems on the comﬁutation of individual mockups of thermo-
and mesospheres and prepares the way for the problem of forecastiﬁg on the
state of these areas in connection with solar actilvity and certain other
factors. The other possibility consists in he investigation of connections

existing between various stratified layers of the atmosphere..”
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BOLTZMAN"S KINETIC EQUATIONS SYSTEM AND GRADE"S METHOD OF SOLUTION

1. General aspect of the kinetic equations system of Boltzman for a

composite gas compound in the presence of reactions

We shall start with the basic distribution function fa(r”vm t)) of
dynamic states of one particle in a six-~dimensional phase space of the X,
coordinates and Vi velocities (x, 2, 3). The X and Vi magnitudes are
components of the r vector which determines the location of the particle
and the vector Vet which determines its velocity at a time moment t.

In a non-equilibrium gas mixture made up of n components, when the
interactions between the partiqles are limited:. to paired collisions which

do not result in a transformation of their nature the change fa is described

by the system of Boltzman's kinetic eguations
Df. =38k, \ (1)

where the summing up is distributed over all n components of the gas mixture

and the operator
d g Fal 9
D= +vusz t o0, (2)

while the force F¢jwith components Fid affecting the particle is a function
of the point and the time.
The collision integral in the right part (1)

St [f ol Va9l FeSo = TS p) a2 vy, (3)

may be considered as an operator transforming the dynamic state of the parti-
cles due to the dccurring paired éollisions. The shaded and unshaded pro-

duct of distribution functions have a meaning determined by the formulae:
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o , o (4)
fefo=fu(t, vas &) folr, ve, )1
£) ' '

|
'fafB:fu(r' va! t)fﬁ(rr vﬁy f (5)

while the connection between the shaded and unshaded velocities is given by

the formula:

Vo=V + (Ve - )% | (&)

__“_’Al;z Vi — (vﬁa * V) Y, (1)

where

v5u=v3 — Vg

(8)

is the relative velocity of particles. The collision integral Sg\inéludes
the difference in operators containing products f;f%\ and fahJ; #he first
and second correspond respectively to the transformation'of'dynamiérStaEes‘
leading to an increase and decrease in the number of particles in time in
a state determined by the volume element drdv¢ near the point (r, v) of the
phase space; v is the unit vector of the normal to the effective differen-
tial cross-section of the collision ©0ap| in the element of the solid ‘dQA
angle —\ coinciding with the line of center of the colliding particles,
is the coliision angle between v and the direction of the incident

particie,
d2=sinddide, |
(9)

where ¢ —\is the aximuth . (055(p$£23)/

Function:ﬁ' is rated for a mass density Py’ in such a way that

. jlfadva:Pa-/ (10)

In the simplest case of the one-component gas we should rate n = 1
in the above formulae. The system (1) then will become a single intégfo—

differential equation of Boltzman for a single distribution function.



-17 =

In a gas system affected by external effects many various reactions
may take place, those inherent to the system itself at a given thermodynamic
state as well as those excited by external agents, for instance, by photon
or corpuscular flux. Such reactions are either positive or negative sources
of a modified function fc depending upon the fact whether they lead to the
appearance or disappearance of the alpha particles.

The Boltzman equatlons system, which takes into account the reactions
could formally be expressed in the following fornm:

Df=3 S+ R+ N R o
p 1 1 |
where}?@h and l@g—jare operators of separate processes of the (R%» which
cause the appearance of W(Ri)\,and,the disappearance of (R . ) of alpha
particles in the phase volume drdva near the point (n;ygr;¥

) (s - <-\
In recording the concrete expressions for-Rz\ and'EQ‘f

as a symbol
of the process we shall write the symboli.of the initial products of the f\
reaction.

Lét‘ﬁs'rémgrkz at this point that the form in which the Boltzman's ::
equation system is recorded (11) is based on the assumption that the
reactions are independent. 1In fact, only with this assumption the right
parts of the equations may be presented as a sum of operators of individual
processes. |

Expressions'Ri\.and. R&\ will be in the future called the reacdtion
integrals.

The value of the distribution functions is taken in point (r, v, t)
everywhere and the (drdv) is the phase space element considered. However,

in the future, for the sake of abbreviation, we shall delete the variables

t and r in functional recordings and in recordingﬁpﬁOintsﬁaﬁd’elémenté of
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the phase space while concentrating our attention on the velocity space.

2. Mono-molecular and bi-molecular reactions

Tnasmuch as the gas density in the upper atmosphere is sufficiently
low the processes occurring within, can, basically, be regarded as mono-
and bi-molecular.

l. Mono-molecular reaction

The monomolecular reaction of the dissociation of one particle into two

o,

p.*——)a,+pi - (1)
is described by the relations
d{\’“.—*ﬁlp‘.
dr T % (1)
dN, ANy _ Ny
dt at — 1
(2)
/‘\ R .
where ! | AﬂﬁnlNa,A%f—l are the corresponding numerical énsities of

particles and ¢ 1is the life time 6f a dissociating particle not dependent
upon its vehocity. This conformity to the principle is justifiable for those
particles which poséess around point (vy» ) a velocity contained in the
phase volume eleﬁenttde.,‘

Then, taking into account the rate fixing (1.10), we will probably

have

‘R:::_Jt—fi'-’(‘vﬂ') [I (3)
-—which is a general expression for the operator ofnthe dissociation of the
p*/ particle into two.

Tﬁe decay of the ;¥ particles leads to the appearance of alpha
particles in such a manner that the velocity of.their origination, according

to (2) must be proportionate with the number of those p*/ particles which
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possess dynamic states, situated in such a Volumelelement'dv;u\‘ that after
decay the alpha particles acquire the velocity contained in‘4yq.\fj

The connection between the pulses of the particles formed ana the
pulse of the initial particle is given by the law of pulse and energy
conservation.

If we are to consider the p*|particle pulse as given, then, out of
"the four conservation laws we must determine six unknown pulse components of
the alpha and beta particlés, consequently the pulse cdmponents of the latter
will depend upon the pulse of the initial pa;ticle and two parameters.i®

It is a known fact that the unit Yector k can be determined in a
one-digit manner by two angles (‘0land(,ﬂ ) which can be considered as
being just such two parameters, in other words, record to functional con-

nections
v.=Y (v., k J
=V )‘ (4)
(5)
where the form of functions Yl and Y2 is determined by the energy and pulse
conservation laws. Each direction of the vector k ( ﬁ,Q%) can have the
ds
probability et added to its value and then, on the basis of the above
consideration we shall obtain the expression for operators of the origina-

tion of alpha and beta particles.

o 1 . o (6).
RF*=‘mj‘f‘f“(v°’, k)d y ‘
g 1 ,
R '_"E-T?jfu‘(vﬁ’ k) dQ l (7)
When the particle decays into two equal particles, then as can be-

seen from (4) and (5). the v's function will be two-digital, which will be

in full agreement with the existence of the last two operators.
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2. Bimolecular reactlons
As a result of the bimolecular reaction two colliding particles form

a new system of one or several particles. For the reaction in the form

at+B—xt+r ()
dN -
@ = — N N ’ .
| w7 caB‘vBal alV P (8)
s~ Voa NN | (9)

where E;é;s the differential section of the reaction (is opposed to the
elastic crossssection éf collision Uagthis magnitude is marked with a dash
over the section symbol). In the simplest’éase, where the cross-section of
collision is expressed by a continuous function of any parameter (for ins-
tance, temperature), the cross-section of the reaction may be presented in
the form of thegﬁproduct of the collision cross-section and the probability
of the onset of the'E;Areaction in the presence of»collision.

At this point the cross-section of the elastic collision would be
equal to the product of the collision cross-section with 1 minus the proba-
bility bility of the reaction. However, the correctness of this assumption
must be specifically investigated in each individual case, and, in addition,
we shall see processes farther below, for which the considered suggestion
is at the very least doubtful. In view of this, we introduce, from the
very start, various symbols to indicate the cross—sections of elastic colli-
sions and of the reaction cross-section, considering the first as being in-
dependent from the second.

Taking into consideration (8) and (9) and keeping in mind that the
distribution functions are rated according to density, in analogy with (1.3)

it is possible to write an equation for function fu
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1

1
dVi—m"ijt: m ‘S‘\S‘G q

o

V,

V| Fufpd2dv, dvg, (10)5 » '

where the integratiqn'is assumed to be effected along -{dev;w
The shaaedrfelatiVe velocity
V‘éuzvé—v; (11)
in accordance with formulae (1.6) and 1.7) means such a wvalue at which, the
particle %, receives, as a result of the reaction of the value of the velo-
city around Vi |

Inasmuch as

o 0(ve. v .
dVadVﬁz‘)—(v:“%dvdex- (12) B ;

the integral of the onset of the reaction of the particle takes the form:

. m, - . N 1 (R 2
Rag:mamp S‘j‘ OaBlv?a Y lfafﬁdg()—(({,x—:_ﬁ)dv)" (13) !

v,) :

The connection between v'¢, v'y,Vy and va is given by formulae(A,8)
in th% @A addendum, therefore the sub-integral expression is a function
Vx\ and Va|

The remaining integrals of the reaction (II) have the form

;

R Tm fj' Sap [Vou » V| fuSpd2dvy, (14) |

Sag | Vea - ¥] 1 fﬁdoagv“: v))dv (15)

“,zzﬂaualvsa V| fofpd2dv,.  (16)

mm
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Paragraph 3. Integrals of reactions for some individual concrete
processes

The upper atmosphere presents a complex photochemical laboratory
where a multitude of reactions take place. Using, subsequently, the equa-
tions system (1.11) in the upper atmosphere analysis, we shall limit our-
selves to those reactions of which we know that they  «play an important
part.

These are, in the first place, the reactions of photodissociation of
molecules and the recombination of atoms, photq—}onization and recombination
of electrons and ions, of excitation and spontaneous radiation, of attenua-
tion of the excitation during collisions and certain other Qﬁphenomena.
These reactions are, of course, insufficient for the description of all
properties of the atmosphere, but it can be hoped that they will serve as
a certain physical model of interaction of the solar radiation and the Earth
atmosphere, in the first approximation which actually determines the basic
properties of the upper atmosphere.

Let us now consider certain concrete reactions and record their in-
tegrals.

(1) Collisions of particles with %different masses (3)

The collision of particles with different masses may be considered
as a bimolecular reaction

atB—aB. Toam
Its particular feature is in the fact that the reaction integrals
1

can be united into one member.R:B—}—R:g:Si_—_—S‘S‘daglV‘;, . v](f;fé~fafﬁ)d9)(

Mg
XdVB. (1)
S% has the same fopm but the alpha and beta symbols exchange their placeé.

The commection between the particle velocities before and after the collision

\
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is give by formulae (A.1ll) in the addendum A.
2) Reaction of particles excited by a photon (3)
This reaction belongs in the bimolecular reactions group although itth

is somewhat extraordinary. The reaction formula has the form:

o —p*. (V)]
Due to the participation of photons in the reaction it is expedient

to consider the process in the pulse phase space p(px, Py, pz) instead of in

Yy
the phase space of velocities.

A reaction is achieved only in the ase when the molecule excitation
level corresponds to the sum of the photon energy and the kinetic energy of
the moleciile in their inertia center system.

The reaction integrals have the form

R = — ([ 5ucleycos | fi fd2 dpa, @)
««R‘;;:—nglcocosﬂlféf;d‘ﬁ%%))—dp?- (3)

Inasmuch as the photons do not possess a rest mass their pulse dis- .
tribution functions are rated for the numerical density of photons. The ée—
latiﬁe velﬁcity of a photon and a molecule equals the speed of light S
{9 —Hs the angle formed by the direction v and the direction of the photon
flight.

Let us explain the last equation. W€ have

dpwe Df o= [ el cocos 91 £y fr0@ dpy|dps, (4

dp.’ 0(p') ,
Jet Es = apy @ Pe—Pi-F P [dopuym (A 12)

|
|
} (formula (A.12)

of addendum A). Wherefrom:

dp;L , '
dpp.:]’ dv, =dv,,. (5) ’;
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3) Reaction of a spontaneous radiation of an excited particle (3)

I3
!

The reaction formula
p*—p e V) @
The reaction of spontaneous radiation belongs. to the monomolecular

reactions group in the same manner as the reaction of dissociation of an

activated molecule (integrals of reaction (2.3), (2.6), @nl)
The integrals of this reaction are in the form
B
Ry ffp. Pye) (s, “
*= th'fp‘ p,s dQ (7) t}

The connection between the pulses of particles 1¥fand ;ﬁ\is demonstrated in

formulae (A.13) of the addendum A.

4) The reaction of excitation damping in collisions with a non-excited
particle (3)

This is a bimolecular reaction which we shall record as follows:

p* gy g (V1)

On the basis of paragraph 2 it is easy to obtain the expressions of
the reaction integrals

RH — — _;_ﬁsw. [Vprw + Y| fufurd2dVys,  (8)

/ Rw* = *—%‘ngp-p'i Viry - ”lfufn* ae d‘ﬁn (9)

I w!
R Z—Sgcpu‘lvu‘u V‘fﬂfﬂ*dgdv“ld((v )) (10)

ppt

|
|
i
i

o Vee)
== S‘S“’w lvnu Vlfufn’d“dvmj,_((f”—“j (11) K

N*‘
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We notice that actually parti;iesufénd uﬂdo not differ from mu and
the corresponding members may be associatéd. The particle pulses before and
after the reaction are connected by formulae (A.14) iq addendum A.

) I

i
5. Reaction of photodissociatlon (photoionization) (3)

The reaxtion expression

pto—atB (Vi)
(a, f[= are symbols of atoms which originated as a result of the dissocia-
tion.

The integrals of the reaction will be recorded in the form, of

RF=— ([ sslcocos ] fofpd2aps,, (12)

|
I*jvj‘ P?]cocosalfnf?d-ﬂdpﬁ ‘agz};mﬂ?)" (13)

—m ‘S.j‘ p?lcocos{)'fuﬂrd d “FEI‘:J—:_;;:%' (14) ;

We have analoéous expressions for the ions (u)/ and the electrons
(e)l where the symbols Y and ¢|are situated in the place of alpha and beta,
respéctively. The connection between the pulses of the particles before
and after the reaction is expressed in formulae (A.18) and (A.19) of
addendum A.

6) Reaction of recombination with photon radiation (3)

The reaction formula is
a4-B—p+o. (VI

The integrals of the reactions for the recombination of atoms have

the following expression

8 q—;-‘ ” LY ’31911 . (15)
R ' ;11355 L] VA"J- J\fa.f‘/( P|
- 'Rgﬁ:"ﬁ‘“gaelvea-vlfafsde-dpa, (16)

|
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Ry = ” aelvpa lffsd”dpw((p“' :,"‘2 (17)

Analogous expressions have beenvobtalned for ions and'élect;oﬁs; with
however, the difference that in the latter case the symbols f!aﬁd ?\will
replace the alpha and beta symbols respectively.

The particle pulses before and after the reactions are connected by
the expressions (A.22) and (A.23) of addendum A.

Paragraph 4. Grade method of solution of a kinetic equation

Grade used the momentum method to solve the kinetic equation for a one-
component gas; to this end he applied the Ermit polynomial expansion of the
distribution function which can be.expressed by the local Maxwell distri-
bution function.

(1) In order to fina the expansion factor for a non-equilibrium
distribution function it is necessary‘to solve, without successive approxi-
matiohs the final system for hydrodynamics equations whose number is de-
termined by the number of physical characteristics necessary for the des-
cription of the system. The presentation of the Grade method will be re-
ported; following, )ﬁ;Lbasically, in the main features, Sommerfeld's (2).

Boltzman equation for a one-component gas is easily obtained from
the system (l.1). In fact, we should establish that n = 1 in this case
and the system then becomes one equation in which the symbol beta repre-
sents molecules of the same single component alpha. Therefore, we may

omit the symbols alpha and beta in the kinetic equation and write

Df (1)

It
9]

By deleting, for the same reasons the symbols Y, Me and V for the

collision integral we obtain:
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S—%XS‘FIV.vl(f'f{;—:ffp)dgdvgu,. o \

where ——-&dV5——/is the number of molecules in the dynamic state around
m
i t . -
poin VW
.-Grade searched a solution for equ. (1) in the form of the distribu-

tion of function expansion with the generalized Ermit polynoms:-

f=f0 Z_ b(") H(")

nl ijR o AR ..y (3) "‘
n=0 ) ‘
whiere ' ‘
c? o _e
m __L___ % 2) 4) -
Hi}f!k*"_—e Ocidcl-dck... (3 ) () ! ¢
—polynom in the three-dimensional space of componehts of the 'reduced" velo-
v—u' ‘
city c-—-——“?iff,_ | (5)

m
u' and T' are the parameters, k - is the Boltzman's constant and, finally

2

.fo=P'(,2—r%7)3/2 &7 (G)gl

~ is the solution of the equation (1) in a zero approximation, in other words,

the local Maxwell distribution function containing ‘pﬂ]T' and u' as para-
meters.

The 0', T' and u' magnitudes should be determined by means of charac-
teristics of the gas state.

These characteristics are the density P.\the pressupre p and the gas

velocity u, which are determined by means of the non-equilibrium distribu-
tion function f:

sz.fdvr ’
. pu.=§vf_dv,
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In order to connect the parameters of the Maxwell distribution func-

tion with the characteristics of the state Grade established the following

conditions: _ p==f}%dv, . )
Pu=jvf0dv, A (8)
=852 fav, © |
- p=ET (10)

After computations, we find that

This selection of parameters of the local distribution function -

)

Lt
1

as we shall see below - brings about certain limitations to factors  p and

bij
Let us remark that this selection of parameters is not the only pos-
sible one.
The expression (4) for the Ermit polynoms, may, evidently, be also

presented in he form:
m 1 "fo
H”k“'_ﬁdcidcjdck.... (1)
The expansion (3) upon transition to physical components of heat

velocity is then
E=v—u | (12)

. 5
and introduction of new factorS\S\an ...) connected with he previous for-
N 1} "

mula
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. (n) ;
b(f') . ()3_7‘—)11/2 = ________auk = (13) ‘

m P
may be written in the form

L g “1(73 S - (14)
.Jon 050606, ... T

b1

From the start we may establish that: awE:p_! The expansion (14)
then, starts with the Maxwell function of equilibrium gase.

Let us introduce the moment concept . The moment of the n order is

the magnitude '
M3 _j(v poee) SV, (15) ]

uk

. The first moments have a definite physical sense (value)

| M(°)=j'fdv=p, | (16)
. : M,“’:jqfdv:pu,., (17)
A’Iﬁf):——jv?fdv:j‘{(v——u)2—]~2(v—u) cu—+u?) fdv.
(18)

Using (9),(16) and (17) we obtain
M = 3p+pu. (19)
In the general form the moment of the second ordéf can be written

as

M= [ow;fav={le+8) @+ 5 &=
—pu;+ [ 8, 08 (20) \

Let us present .
SELEjdeZPij° \

then MP —pua;+Py. (21)

Tensor ‘ Py =Py — Py, (22)
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as we shall see later is the tensor of viscous tensions.

It is clear from (9) that
)i

Piu=0. (23)

The third-order moment Ad@?’ we shall report in the form

ME = [ oo,f dv = (4 +5) (+5) (et 8) S = |
ﬁmuq%+upﬁ+qu4uPU+yhﬁfﬁ @Q j
The last integral shall be designated as Sum\ It is a tensor of

the third rank which characterizes heat transfer in the gs.

\
We establish a connection between the factors aga‘“\\ in the distri-

bution function expansion (14) and the moments determined above.

We analyze the first order moment

uyﬁS@fdv_xyw-+U(fN+f:ae'F
2

; +om il ...)ds. (25)

0808,

Before we compute the presented integral we sould prove the auxiliary

theorem: integral,

!
125‘(21515k L3R -)b‘gﬂ%&'ds:o’

when 1 is larger even by one unit than the number of the co-factors

in the parenthesis N.

In fact  j— | dg ks, | (BEE o 1f° |
_ = g dt, | (BEEs .- 6: oL
1—1
Let us take this 1ntegral and analyze it N times by parts. We ob-
N .
tain ” . I—& e
[ — d dr _1\& 0 ('EiEjik .. .) d fo .
| ZS El WD T w T |
\ k=1 ’ 3 [y —

| 65, ... 0%, = &&,...o0, a. . ‘
N I-N ’

i , '+ yaN (ke ...) FNgo :
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All members of the sum become Zero, asif;=-4 oo fo\;bécomes a zero together
with all its derivatives. The last integral will -also become zero if 1 N, for

the same reason. UtlllZlng this theorem, we write (25) as

al)
M‘” 5ufds+j (f0+1'(', "fO)ds\

p 0f

The first integral according to (16) = pu.. Let us compute the second in-

a4, 20T
tegral o S' (f0+1.905 ) jdild&’ﬂpjiidfo:
‘ 20
o‘,
\ fdglds,l. [ro| 7 = [ & fods] =
oM
' e

We obtain finally
‘ M,f”; _ ot |

~ i
yet, according to.(17) //M(? f—zpui./. Tt follows from this that - ,\a,“’—O. \ (26)

Let us considex'the moment of the second order

/Mff’_ fa'u,fdv—j (i + ) (1 +z)><‘

"’ o,

| (fo+o.?d_ +) {

Here, the condition (26) has been utilized. By applying the theorem,

proven above (9) and (16) we obtain
22 2 l
M =puu; -i—pO,,—i—S‘EE me 0(;” dt. ,

Let us compute the last integral: '

() 52 2) ot |

a, f a 028 .
) —,-_"—d o Dma b T \
y 72Ty 05y 0%, ¢ % ) 08, 0%, SodE, ‘

[0%£; 5 LEs
‘08, 0%, = W(Ei T + Eioi”) J" im ajm in* ’\

it follqws from that ,M(;)—Pu,ll, -+ po,,—}—am

but

By comparing the expression with (21) we obtaln

9 t.
' ai(i)_zpi]- 27y !
For the third order moment we have '

,1M11k—§ ,’kadv—j(u +E) (4 +5,)(uk+5k)><

a®
Pun Bfo | Coah ‘33f0
\\ (f o Tty T Fm i T
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More cumbersome computations analogous to the above result in

)

(3)
qu——Pu uk+uipjk+ujpik+u’kpu Qiji «

Comparing this expression with (24) we obtain

3 | ' i
alh = —S8,- , ;\

i (28) y
Thus we have established | 4O —p>
N U
@7 =0 (29)
= |
_ ’; ap=—Sijs

Inasmuch as the phyélcal sense of the moments is unveiled by utilizing
conditions (7) = (10) which determine the selection of parameters of the local

distribution function, the selection of these conditions also involves cer-

tain limitations on factors k and the trace of tensor pPii;| In particular,

¢l ]
the Grade sgheme carries .a; =;0\equal to 0 and P equals zero.
Now expansion (14) for f may be re-written in the form of
[ _ Py 2fy _ Sur _93fo
‘vf._fo—*_”??d:ldﬁl - 6p dﬁzaﬁj05k+ (30)

In the future we shall need the value of the integral
' 20

' N
,,k,—Sssaksl{foJr Py %o Smar 0 }d&. ‘

aCm OE"_’ 6? OEIII ogn oEk
@ -
The third member in parenthesis transforms the correspo..ding 1ntegral

into zero in view of the odd value of the sub-integral function. The second
integral, when analyzed by parts is transformed into

02 £ €651
Pmn
. ()P Km den fodE

while the further computations will bring it to the following form:

—\ [&&;P0 + E‘Ekp'z &P + Ejgkpil +E,‘51Pik + E-kElPij] X
[ ] ]

Xfodgz {pkl ij I pjl rk+p]kotl i Pii 1k+pik3ﬂ+.

+ pij B 1)



—33-

Tn the first integral, in the product 'gigjghgll at least two in-

dexes coincide. Let us asmume that l=i. This integral then- equals

Sés, dz, S TN =—;—jd£1 a'Ez{[EiE,-EkffodE? e /

- [ER] roei]e).

The first member in parenthesis produces zero due to the odd value

l\'.‘[ -

i

6f the function EiLsEnfod22 | the second is reduced to the form
RT o s o
P (Bydjp 00 + aklaij);/
T . Therefore, in the final result we have

5 (4) ET o o . s 53 RT 5 8
Mljkl:P',;{(?u“jk‘l"oik"jz"l‘°kz ij) +ﬁ'(1’m ij+ Pji it

-+ pikail -+ Puajk + pikaﬂ + piia“)' i ,(3,2,)

et -



